Don't let the name fool you: a black hole is anything but empty space. Rather, it is a great amount of matter packed into a very small area - think of a star ten times more massive than the Sun squeezed into a sphere approximately the diameter of New York City. The result is a gravitational field so strong that nothing, not even light, can escape. In recent years, NASA instruments have painted a new picture of these strange objects that are, to many, the most fascinating objects in space.
The idea of an object in space so massive and dense that light could not escape it has been around for centuries. Most famously, black holes were predicted by Einstein's theory of general relativity, which showed that when a massive star dies, it leaves behind a small, dense remnant core. If the core's mass is more than about three times the mass of the Sun, the equations showed, the force of gravity overwhelms all other forces and produces a black hole.

Scientists can't directly observe black holes with telescopes that detect x-rays, light, or other forms of electromagnetic radiation. We can, however, infer the presence of black holes and study them by detecting their effect on other matter nearby. If a black hole passes through a cloud of interstellar matter, for example, it will draw matter inward in a process known as accretion. A similar process can occur if a normal star passes close to a black hole. In this case, the black hole can tear the star apart as it pulls it toward itself. As the attracted matter accelerates and heats up, it emits x-rays that radiate into space. Recent discoveries offer some tantalizing evidence that black holes have a dramatic influence on the neighborhoods around them - emitting powerful gamma ray bursts, devouring nearby stars, and spurring the growth of new stars in some areas while stalling it in others.
In the center of a black hole is a gravitational singularity, a one-dimensionalpoint which contains a huge mass in an infinitely small space, where densityand gravity become infinite and space-time curves infinitely, and where the laws of physics as we know them cease to operate. As the eminent American physicist Kip Thorne describes it, it is "the point where all laws of physics break down".
Current theory suggests that, as an object falls into a black hole and approaches the singularity at the center, it will become stretched out or “spaghettified” due to the increasing differential in gravitational attraction on different parts of it, before presumably losing dimensionality completely and disappearing irrevocably into the singularity. An observer watching from a safe distance outside, though, would have a different view of the event. According to relativity theory, they would see the object moving slower and slower as it approaches the black hole until it comes to a complete halt at the event horizon, never actually falling into the black hole.

The existence of a singularity is often taken as proof that the theory of general relativity has broken down, which is perhaps not unexpected as it occurs in conditions where quantum effects should become important. It is conceivable that some future combined theory of quantum gravity (such as current research into superstrings) may be able to describe black holes without the need for singularities, but such a theory is still many years away.
According to the "cosmic censorship" hypothesis, a black hole's singularity remains hidden behind its event horizon, in that it is always surrounded by an area which does not allow light to escape, and therefore cannot be directly observed. The only exception the hypothesis allows (known as a “naked” singularity) is the initial Big Bang itself.
It seems likely, then, that, by its very nature, we will never be able to fully describe or even understand the singularity at the center of a black hole. Although an observer can send signals into a black hole, nothing inside the black hole can ever communicate with anything outside it, so its secrets would seem to be safe forever.
Comments